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Background
Definitions

We will call a convex n-polytope in Rn a facet.
The polytopes forming the boundary of a facet will be called ridges.
If R is a ridge of a facet F , we will write R < F .

Our data will be
A finite collection of facets,
A rule for gluing facets along ridges.

The gluing is specified in the following way:
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Background
Definitions

To each pair (F ,R) with R < F , there is
A pair (F ′,R ′) = ∗(F ,R) with R ′ < F ′

An isometry T = T (F ,R) of Rn

T (F ,R) Facet F ′

Ridge R ′

Facet F

Ridge R

The following should be an equivalence relation:
(F , p) ∼ (F ′, p′) if

p ∈ R < F and p′ ∈ R ′ < F ′, and ∗(F ,R) = (F ′,R ′)
T (F ,R)p = p′

The space X =(disjoint union of facets)/ ∼ should be a manifold.
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Background
Definitions

If ∗(F ,R) = (F ′,R ′), denote the facet F ′ by F(F ,R).
We will identify ridges R < F and R ′ < F ′ if ∗(F ,R) = (F ′,R ′).

Points are pairs (F , p) with p ∈ F ,
but we may just refer to p if F is understood from context.
We will say p is “in the coordinates of F”.

We will call points on the boundary of a ridge warped points.
X \ { warped points } is a flat Riemannian manifold.
This gives a notion of geodesics and an exponential map.
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Geodesics
Example on an embedded surface

Facet F Facet F1

Facet F2

p

Figure: A view from the embedding.
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Geodesics
Example: Step 1

Given v ∈ TpF , we can compute expp(v) in the following way.

Let q = p + v .

p

Facet F

Ridge R

q

Figure: Since q /∈ F , apply T (F ,R) to p and q.

Thomas Maienschein () Visualizing piecewise-flat manifolds November 22, 2010 6 / 31



Geodesics
Example: Step 1

Given v ∈ TpF , we can compute expp(v) in the following way.
Let q = p + v .

p

Facet F

Ridge R

q

Figure: Since q /∈ F , apply T (F ,R) to p and q.

Thomas Maienschein () Visualizing piecewise-flat manifolds November 22, 2010 6 / 31



Geodesics
Example: Step 2

p1

q1

Ridge R1

Facet F1

Figure: Since q1 /∈ F1, apply T (F1,R1) to p1 and q1.
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Geodesics
Example: Step 3

p2

Facet F2

q2

Figure: Since q2 ∈ F2, stop; exp(v) = (F2, q2).
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Geodesics
Algorithm

Let v ∈ TpF .
To find exp(v), let q = p + v , and call the following algorithm:

Algorithm
exp(F , p, q){

if(q ∈ F ){ return(F , q); }
else{

R = Ridge through which the line segment pq exits F ;
F ′ = F(F ,R);
T = T (F ,R);
return exp(F ′,Tp,Tq);

}
}
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Geodesics
Some useful remarks

We saw that for v ∈ TpF , expp(v) = T (p + v) for some isometry T .
If we trace the path expp(tv) as t goes from 0 to 1,
it would pass through some sequence of facets and ridges.
This sequence determines the transformation T .

We can “parallel transport” vectors along expp(tv) from p to expp(v):
If expp(v) = T (p + v), then for w ∈ TpF , define

Pv (w) = T (p + w)− T (p) = T (w)

Now we can move at a consistent velocity in our space.
If w ∈ TpF is the velocity, and ∆t seconds have passed,

Set the new position to expp(w ·∆t)

Set the new velocity to Pw ·∆t(w).
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Geodesics
Passing through warped points?

How does the algorithm work in the following case?

p

q

We usually say that v is not in the domain of exp.
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Geodesics
Passing through warped points?
An alternative (in 2-dimensions) is the “straightest geodesic”.

p

The path is continued in such a way that

(sum of red angles) = (sum of black angles)

This can be computed by “walking” around the vertex.
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Geodesics
First step to visualization

Now we can figure out what we would “see” from a position p.
Let’s see what kind of phenomena we can expect to occur.
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Geodesics
First step to visualization

p q

Figure: (κ > 0) I see two copies of q from p.
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Geodesics
First step to visualization

q

p

Figure: (κ < 0) I cannot see q from p.
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Visualization
What are we trying to do?

Fix a facet F0 and a point p ∈ F0.
We will call TpF0 the visual field for an observer at p.
If the observer looks in a direction and distance v ∈ TpF0,
what (s)he sees is whatever is at the point exp(v).

So, we want to identify TpF0 ' Rn and “populate” the visual field by
putting at v whatever is in the space at exp(v).
We can’t do this point-by-point, but we will make some observations
allowing us to do this efficiently.
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Visualization
Observation 1

For v in the domain of exp, consider the path exp(tv) for t ∈ [0, 1].
The path passes through some sequence of facets and ridges.

Facet F1Facet F0 Facet F2

Ridge R0 Ridge R1

p

Figure: Here, the sequence is (F0,R0,F1,R1,F2).

All v in the domain of exp have such a sequence S(v).
The domain of exp can be partitioned into sets D(S) = {v |S(v) = S}.
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Visualization
Observation 2

On each of the sets D(S), exp has a simple form:
For S = (F0,R0, . . . ,Fk ,Rk ,F ) and v ∈ D(S),

exp(v) = (T (Fk ,Rk) ◦ · · · ◦ T (F0,R0)) (p + v).

Let E(S) = exp(D(S)) ⊂ F .
We can draw the whole chunk D(S) of the visual field at once,
by applying the inverse of the above isometry to E(S)
(and any objects within).
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Visualization
Observation 3

The collection of sequences forms a tree, Γ:
The root of the tree is (F0).
The children of (. . . ,F ) are the sequences (. . . ,F ,Ri ,Fi ),
where Ri < F and Fi = F(F ,Ri ).

If we can find E(S ′) for children S ′ of S, where E(S) is known,
then by traversing Γ we can draw the entire visual field.
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Frustums
Definition

The fourth observation is that the sets E(S) have a particularly nice form.
To state the observation, we make the following definition:

Definition (Frustum)
A frustum is a subset V ⊂ Rn such that there exists

a source point p ∈ Rn and
a convex (n − 1)-polytope Q 63 p,

such that V = {p + k(q − p)|q ∈ Q, k ≥ 0}.

It will be convenient to consider ∅ and Rn to be a frustums
(the empty frustum and full frustum, respectively).
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Frustums
Examples

p

Q

p

Q

Figure: Examples of frustums.
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Frustums
Creation

A frustum can be created from a point and a ridge.
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Frustums
Transformation

A frustum can be transformed along a ridge.
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Frustums
Intersection

Frustums can be intersected to get a new frustum (which may be empty).
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Frustums
Intersection

A frustum V with source point p intersects a ridge R positively if
∃v ∈ V ∩ R such that (v − p) · n > 0,
where n is the outward pointing normal to R.

+

∅

+−
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Visualization
Observation 4

Claim: For every sequence S = (. . . ,F ), there is a frustum V(S)
such that E(S) = V(S) ∩ F .

To prove this (and also complete the algorithm to draw the visual field)
We show this is true for the root of Γ

We compute V(S ′), where S ′ is a child of S and V(S) is known.

The claim is trivial for the root (F0) of Γ, since E(F0) = Rn ∩ F0.
For the inductive step, we will do an example.
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Visualization
The inductive step

Data for sequence S = (. . . ,F )

Facet F

Facet B

Facet A

Ridge β

Ridge α

E(S)

V(S)

The frustum intersects ridges α and β positively.
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Visualization
The inductive step
Data for child node S ′ = (. . . ,F , α,A)

Facet F

Facet B

Facet A

Ridge β

Ridge α

V(S ′) = (red frustum) ∩ (black frustum)
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Visualization
The inductive step
Data for child node S ′′ = (. . . ,F , β,B)

Facet F

Facet B

Facet A

Ridge β

Ridge α

V(S ′′) = (red frustum) ∩ (black frustum)
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Visualization
The algorithm

Let S = (. . . ,F ) be a sequence for which V(S) is known.
Let S ′ = (. . . ,F ,R,F ′) be a child of S.
The following returns V(S ′):

Algorithm
if( V(S) intersects R positively ){

p = Source point of V(S);
VR = Frustum generated from p and R;
return T (F ,R)(VR ∩ V(S));

}
else{ return ∅; }
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