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Background
Moduli Spaces

What is a moduli space?

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 2 / 32



Background
Moduli Spaces

Example: Smooth plane conics.

A plane conic is a curve in P2 defined by a degree 2 polynomial:

Ax2 + By 2 + Cz2 + Dxy + Exz + Fyz = 0

We can regard this as a point [A : B : C : D : E : F ] ∈ P5.

P5 is a moduli space of plane conics:{
Points of P5

} 1−1←→ {Plane conics}
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Background
Moduli Spaces

What about the moduli space of smooth plane conics?

The conic
Ax2 + By 2 + Cz2 + Dxy + Exz + Fyz = 0

is singular exactly when ∣∣∣∣∣∣
2A D E
D 2B F
E F 2C

∣∣∣∣∣∣ = 0.

This is a degree 3 polynomial in the coordinates of P5.
It defines a hypersurface ∆ ⊂ P5.
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Background
Moduli Spaces

So:

P5 \∆ is the moduli space of smooth conics.

P5 is a compactification of the moduli space.

∆ is the boundary of the compactification.

What is the boundary like?

∆ is itself singular.

The singular locus is ∆double, the locus of “double lines”

(αx + βy + γz)2 = 0

Blowing up along ∆double will resolve the singularities in the boundary.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 5 / 32



Background
Moduli Spaces

So:

P5 \∆ is the moduli space of smooth conics.

P5 is a compactification of the moduli space.

∆ is the boundary of the compactification.

What is the boundary like?

∆ is itself singular.

The singular locus is ∆double, the locus of “double lines”

(αx + βy + γz)2 = 0

Blowing up along ∆double will resolve the singularities in the boundary.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 5 / 32



Background
Moduli Spaces

So:

P5 \∆ is the moduli space of smooth conics.

P5 is a compactification of the moduli space.

∆ is the boundary of the compactification.

What is the boundary like?

∆ is itself singular.

The singular locus is ∆double, the locus of “double lines”

(αx + βy + γz)2 = 0

Blowing up along ∆double will resolve the singularities in the boundary.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 5 / 32



Background
Moduli Spaces

So:

P5 \∆ is the moduli space of smooth conics.

P5 is a compactification of the moduli space.

∆ is the boundary of the compactification.

What is the boundary like?

∆ is itself singular.

The singular locus is ∆double, the locus of “double lines”

(αx + βy + γz)2 = 0

Blowing up along ∆double will resolve the singularities in the boundary.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 5 / 32



Background
Moduli Spaces

So:

P5 \∆ is the moduli space of smooth conics.

P5 is a compactification of the moduli space.

∆ is the boundary of the compactification.

What is the boundary like?

∆ is itself singular.

The singular locus is ∆double, the locus of “double lines”

(αx + βy + γz)2 = 0

Blowing up along ∆double will resolve the singularities in the boundary.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 5 / 32



Background
Moduli Spaces

So:

P5 \∆ is the moduli space of smooth conics.

P5 is a compactification of the moduli space.

∆ is the boundary of the compactification.

What is the boundary like?

∆ is itself singular.

The singular locus is ∆double, the locus of “double lines”

(αx + βy + γz)2 = 0

Blowing up along ∆double will resolve the singularities in the boundary.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 5 / 32



Background
Moduli Spaces

The moduli space of genus one stable quotients is a nonsingular
compactification of the moduli space of maps from smooth genus 1 curves
into projective space.

(By curve we mean a 1-dimensional complex projective variety)
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Background
Maps and Quot Schemes

Maps C → Pn−1 can be specified by a short exact sequence of bundles.

Consider
0→ S → O⊕nC → Q → 0

where S is a line bundle.

Dualize the first map to get n sections of S∨:

O⊕nC → S∨

Define a map by:

p 7→ [s1(p) : · · · : sn(p)] ∈ Pn−1

Degree d maps correspond to the case deg(S∨) = d .

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 7 / 32



Background
Maps and Quot Schemes

Maps C → Pn−1 can be specified by a short exact sequence of bundles.

Consider
0→ S → O⊕nC → Q → 0

where S is a line bundle.

Dualize the first map to get n sections of S∨:

O⊕nC → S∨

Define a map by:

p 7→ [s1(p) : · · · : sn(p)] ∈ Pn−1

Degree d maps correspond to the case deg(S∨) = d .

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 7 / 32



Background
Maps and Quot Schemes

Maps C → Pn−1 can be specified by a short exact sequence of bundles.

Consider
0→ S → O⊕nC → Q → 0

where S is a line bundle.

Dualize the first map to get n sections of S∨:

O⊕nC → S∨

Define a map by:

p 7→ [s1(p) : · · · : sn(p)] ∈ Pn−1

Degree d maps correspond to the case deg(S∨) = d .

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 7 / 32



Background
Maps and Quot Schemes

Maps C → Pn−1 can be specified by a short exact sequence of bundles.

Consider
0→ S → O⊕nC → Q → 0

where S is a line bundle.

Dualize the first map to get n sections of S∨:

O⊕nC → S∨

Define a map by:

p 7→ [s1(p) : · · · : sn(p)] ∈ Pn−1

Degree d maps correspond to the case deg(S∨) = d .

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 7 / 32



Background
Maps and Quot Schemes

Maps C → Pn−1 can be specified by a short exact sequence of bundles.

Consider
0→ S → O⊕nC → Q → 0

where S is a line bundle.

Dualize the first map to get n sections of S∨:

O⊕nC → S∨

Define a map by:

p 7→ [s1(p) : · · · : sn(p)] ∈ Pn−1

Degree d maps correspond to the case deg(S∨) = d .

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 7 / 32



Background
Maps and Quot Schemes

The moduli space of maps C → Pn−1 sits inside of a Quot scheme.
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Background
Maps and Quot Schemes

Let CB → B be a family of curves, E a coherent sheaf on CB .

The Quot scheme Quotr ,dE/CB/B is defined by:

{
Maps

T → Quotr ,dE/CB/B

}
1−1←→


Families of quotients of E

parameterized by T
with rank r and relative degree d


Meaning:

(i) A map f : T → B,

(ii) A quotient of ET = f
∗
E on CT = T ×B CB , flat over T :

[ET � Q] // CT
f //

��

CB

��
T

f // B
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Background
Maps and Quot Schemes

Example:
Consider Qd = Quotn−1,d

O⊕n

P1 /P1/C
.

Points correspond to sequences

0→ S → O⊕nP1 → Q → 0

with deg(S∨) = d . Q may not be locally free.

Try to define P1 → Pn−1 : p 7→ [s1(p), · · · , sn(p)] like before.

Now the si can all vanish at the same point (rational maps).
The degree of τ(Q) at p = common order of vanishing of si (p).
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Background
Maps and Quot Schemes

Qd is a nonsingular compactification of the space of maps P1 → Pn−1.

The boundary is singular with high codimension.

The boundary has a filtration

Zd ,0 ↪→ Zd ,1 ↪→ · · · ↪→ Zd ,d−1 ↪→ Qd

where Zd ,k = {Quotients w/ degree of torsion ≥ d − k}
On P1

Qd
, the locus where all si vanish has codimension n.

The image in Qd is Zd ,d−1, so the boundary has codimension n − 1.

Yijun Shao carried out a blow-up procedure on Qd yielding a boundary
which is a simple normal crossings divisor.
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Background
(Quasi-)Stable Quotients

What about the space of degree d maps from a genus 1 curve to Pn−1?

Marian, Oprea, and Pandharipande define a nonsingular compactification.

Allow nodal curves,

Allow quotients which are not locally free.

This is the moduli space of stable quotients Qd .

A nodal curve has singularities that look like xy = 0 (analytically).
(Picture: A collection of smooth curves stuck together at some points)

A semi-stable genus 1 curve is smooth or a cycle of P1’s.
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Background
(Quasi-)Stable Quotients

A degree d quasi-stable quotient is:

A semi-stable curve C (← g = 1),

A quotient of O⊕nC

0→ S → O⊕nC → Q → 0

satisfying:

(i) Q has rank n − 1 and degree d ,
(ii) Q is locally free at the nodes of C .

Stable means (in this setting):
deg S∨|Ci

> 0 for each component Ci of the normalization of C

Qd (resp. Q̃d) = moduli space of stable (resp. quasi-stable) quotients.
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Qd (resp. Q̃d) = moduli space of stable (resp. quasi-stable) quotients.
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Background
(Quasi-)Stable Quotients

A few things to note:

The inclusion Qd ↪→ Q̃d is an open embedding.

There are forgetful maps Q̃d →M1 and Qd →M1.
(It can be shown that these are smooth)

For a fixed family of curves U →M1, there is an open embedding

U ×M1 Q̃d ↪→ Quotn−1,d

O⊕n
CU
/CU/U

Theorem (Marian, Oprea, Pandharipande): Qd is a nonsingular,
irreducible, separated, proper Deligne-Mumford stack of finite type over C,
of dimension nd .
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Background
Blowing up

Like Qd (g = 0):

There is a filtration of the boundary

Zd ,0 ↪→ Zd ,1 ↪→ · · · ↪→ Zd ,d−1 ↪→ Qd

where Zd ,k = {Quotients w/ degree of torsion ≥ d − k}
The boundary is singular and has high codimension (n-1).

We will adapt the blow-up process for Qd (g = 0) to Qd (g = 1).
Goal: Show the resulting boundary = divisor with simple normal crossings.
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Background
Blowing up

Blow up each row along the space indicated by a box.

Zd−1
d ,0

��

Zd−1
d ,1

��

· · · Zd−1
d ,d−1

��

� � // Qd−1
d

��
Zd−2
d ,0

...
��

Zd−2
d ,1

...
��

· · · Zd−2
d ,d−1

...
��

� � // Qd−2
d

...
��

Z0
d ,0

��

Z0
d ,1

��

� � · · · // Z0
d ,d−1

��

� � // Q0
d

��
Zd ,0

� � // Zd ,1
� � · · · // Zd ,d−1

� � // Qd

Theorem: Zd−1
d ,0 , . . . ,Zd−1

d ,d−1 are nonsingular, codimension 1, and

intersect transversally in Qd−1
d .
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The Setup
Defining the Scheme Structure

Consider the universal sequence on CQd
:

0→ S→ O⊕nCQd
→ Q→ 0

Dualize, twist, and push down to Qd :

π∗O⊕nCQd

∨
(m)

ρm−→ π∗S
∨(m)

(Stability implies there is a relatively ample bundle for the twisting)

For m� 0, this is a map of bundles on Qd .
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The Setup
Defining the Scheme Structure

For q = (C ,O⊕nC � Q) ∈ Qd ,

rank ρm|q = mD + d − deg τ(Q)

(D is the degree of the ample line bundle on CQd
)

Hence:
deg τ(Q) ≥ d − k ⇐⇒ rank ρm|q ≤ mD + k

Define Zd ,k to be the vanishing of
mD+k+1∧

ρm.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 18 / 32



The Setup
Defining the Scheme Structure

For q = (C ,O⊕nC � Q) ∈ Qd ,

rank ρm|q = mD + d − deg τ(Q)

(D is the degree of the ample line bundle on CQd
)

Hence:
deg τ(Q) ≥ d − k ⇐⇒ rank ρm|q ≤ mD + k

Define Zd ,k to be the vanishing of
mD+k+1∧

ρm.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 18 / 32



The Setup
Defining the Scheme Structure

For q = (C ,O⊕nC � Q) ∈ Qd ,

rank ρm|q = mD + d − deg τ(Q)

(D is the degree of the ample line bundle on CQd
)

Hence:
deg τ(Q) ≥ d − k ⇐⇒ rank ρm|q ≤ mD + k

Define Zd ,k to be the vanishing of
mD+k+1∧

ρm.

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 18 / 32



The Setup
Preparing for Induction: Factorizations

To use inductive arguments, we want to relate the degree d procedure to
the degree k procedure for k < d .
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The Setup
Preparing for Induction: Factorizations

Idea: A degree d stable quotient in Zd ,k can be expressed as a pair: →

0→ S
f→ O⊕nC → F → 0 (← degree k quasi-stable quotient)

0→ K
g→ S → T → 0 (← K is a line bundle of degree −d)

(Stability condition: ωC ⊗ (K∨)⊗ε is ample for all 0 < ε ∈ Q)

Form the cokernel of f ◦ g :

0→ K → O⊕nC → Q → 0 (← degree d stable quotient)

It can be shown that Q fits into the short exact sequence:

0→ T → Q → F → 0.
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The Setup
Preparing for Induction: Factorizations

Define Qd ,k to be the moduli space of these pairs (“factorizations”).

There are maps:

Q̃k Qd ,k
θ

forget
oo

compose

φ // Qd

What if we require the degree k quotient to be stable?

Suppose C has > k irreducible components.

Then C does not admit a degree k stable quotient.

=⇒ No degree d stable quotient on C can be “factored”.

Conclusion: To use induction we will have to blow up Q̃d .

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 21 / 32
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The Setup
Working smooth-locally

Problem: What do we blow up on Q̃d?

Stability =⇒ relatively ample line bundle on CQd
.

Used when defining Zd ,k .

No relatively ample line bundle on CQ̃d
.

Solution: Cover M1 by smooth U →M1 with CU → U projective:

CU //

proj.

��

CM1

��
(∃ rel. ample line bundle →) CUd

proj.

��

BB

U
smooth //M1

(Open in Quotn−1,d

O⊕n
CU
/CU/U

→) Ud

DD

smooth // Q̃d

CC
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The Setup
Working smooth-locally

Use the relatively ample line bundle on CUd
to define

Vd ,0 ↪→ Vd ,1 ↪→ · · · ↪→ Vd ,d−1 ↪→ Ud .

Consider the universal sequence on CUd
:

0→ SU → O⊕nCUd → QU → 0

Dualize, twist, and push down to Qd :

π∗O⊕nCUd
∨

(m)
ρm−→ π∗SU

∨(m)

Define Vd ,k to be the vanishing of
mD+k+1∧

ρm.
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The Setup
Working smooth-locally

The Vd ,k should be closely related to the Zd ,k .

U†d
j //

� _

i

��

��

Qd� _

��

!!
U //M1

Ud
smooth //

??

Q̃d

==

It can be shown that

i is an open embedding and j is smooth,

i−1(Vd ,k) = j−1(Zd ,k) (← Different bundles used for twisting)
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j //
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i

��
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Qd� _
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!!
U //M1

Ud
smooth //

??

Q̃d

==

Hence:

j induces smooth maps j̃ : (U r
d)† → Qr

d ,

j̃−1(Zr
d ,k) = (V r

d ,k)†.

If P is smooth-local, {V d−1
d ,k } satisfy P =⇒ {Zd−1

d ,k } satisfy P.
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The Setup
Working smooth-locally

The blow-up process on Ud :

V d−1
d ,0

��

V d−1
d ,1

��

· · · V d−1
d ,d−1

��

� � // Ud−1
d

��
V d−2
d ,0

...
��

V d−2
d ,1

...
��

· · · V d−2
d ,d−1

...
��

� � // Ud−2
d

...
��

V 0
d ,0

��

V 0
d ,1

��

� � · · · // V 0
d ,d−1

��

� � // U0
d

��
Vd ,0

� � // Vd ,1
� � · · · // Vd ,d−1

� � // Ud
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The Setup
Working smooth-locally

Back to factorizations: ←

Drop the stability conditions in Qd ,k to obtain Q̃d ,k .

Define Ud ,k = U ×M1 Q̃d ,k (← Open in Quot0,d−k
SU/CUk /Uk

)

There are maps:

Uk Ud ,k
θU

forget
oo

compose

φU // Ud

We will show that:

V̊d ,k ' Ůd ,k (← Ud ,k ×Uk
Ůk)

V k−1
d ,k ' Ud ,k ×Uk

Uk−1
k
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Ůk)

V k−1
d ,k ' Ud ,k ×Uk

Uk−1
k

Thomas D. Maienschein () Desingularizing the Boundary of the Moduli Space of Genus One Stable QuotientsJune 9, 2014 27 / 32



More Details
Space of Collineations

We can embed Ud into a space of collineations.
Given bundles E ,F on X , define S(E ,F ) = P(Hom(E ,F )).

Recall rank ρm|q = mD + d − deg τ(Q).
So there is a graph

[ρm] : Ud ↪→ S
(
π∗O⊕nCUd

∨
(m), π∗SU

∨(m)
)
.

Vainsencher carries out a blow-up procedure on S(E ,F ).
It exactly corresponds to our blow-up procedure when restricted to Ud .

Results of Vainsencher =⇒ Uk
d

(
= BlV k−1

d,k
Uk−1
d

)
= Blb−1(Vd,k )Uk−1

d
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More Details
Space of Collineations

On Ud \ Vd ,k , rank ρm > mD + k .

So
mD+i∧

ρm does not vanish for i = 0, . . . , k .

The product of the graphs of
mD+i∧

ρm give an embedding:

Ud \ Vd ,k ↪→
k∏

i=0

Ud
S

(
mD+i+1∧

π∗O⊕nCUd
∨

(m),
mD+i+1∧

π∗SU
∨(m)

)
Using the result of Vainsencher, the closure of the image is Uk

d .
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More Details
Beta Diagram

To show V k−1
d ,k ' Ud ,k ×Uk

Uk−1
k , construct a commutative diagram:

Ůd ,k

ϕ̊U

��

� � α //
k−1∏
i=0

Ud,k
S

(
mD+i+1∧

π∗O⊕nCUd,k
∨

(m),
mD+i+1∧

π∗SU
∨(m)

)
� _

β
��

V̊d ,k
� � γ //

k−1∏
i=0

Ud
S

(
mD+i+1∧

π∗O⊕nCUd
∨

(m),
mD+i+1∧

π∗SU
∨(m)

)

The closure of the image of α is Ud ,k ×Uk
Uk−1
k ,

The closure of the image of γ is V k−1
d ,k ,

β is a closed embedding.
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Future Work

Some things to do:

Study the locus of singular curves in Qd−1
d .

Is it a nonsingular divisor that intersects the Zk−1
d ,k transversally?

Provide a modular interpretation:
Is Qd−1

d a moduli space of stable quotients + extra data?

Is this useful for g > 1? The moduli of stable quotients is singular.
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