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Introduction

In this talk we will:

Review the division algebras R, C, H, O,

Define Clifford algebras

Classify all the Clifford modules of a certain type

Then use our knowledge about Clifford modules to yields results about:

Vector fields on spheres

Division algebras

A few other things

Along the way we will see some “shadows” of Bott periodicity.
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Division Algebras
Definition

A finite-dimensional normed division algebra over R is:

A finite dimensional normed R-vector space with a (not-necessarily
associative) R-bilinear product, such that

A multiplicative identity 1 exists (i.e., 1x = x1 = x),

The product preserves the norm (i.e., ||xy || = ||x ||||y ||).

(In short, it’s a norm-preserving bilinear multiplication on Rn with unit).

Note that we can “divide”:

There are no zero divisors (xy = 0 =⇒ ||x ||||y || = 0)

For 0 6= x ∈ K, the left-multiplication map Lx is a linear isomorphism.

So there exists y ∈ K such that Lxy = 1.
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Division Algebras
Complex Numbers

The first example (other than R!) is C.

As an R-vector space, C ' R2.

The absolute value on C is the usual norm on R2.
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Division Algebras
Complex Numbers

We can construct C by the Cayley-Dickson construction:
C consists of pairs of real numbers with multiplication

(a, b)(c , d) = (ac − d∗b, da + bc∗)

where ∗ is the conjugation on R (i.e., it doesn’t do anything).

From this construction, define a conjugation (a, b)∗ = (a∗,−b).
This is just the usual (a + bi)∗ = a− bi .
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Division Algebras
Complex Numbers

C can be used to describe rotations in R2:

C acts on C by left multiplication.
Identifying C with R2 gives a homomorphism C→ M2(R) : z 7→ Lz .
For z with ||z || = 1, we have Lz ∈ O(2).

Consider an odd-dimensional sphere S2n−1 ⊂ R2n.
By identifying R2n with R2 ⊕ · · · ⊕ R2,
we can construct a nonvanishing vector field:

At the point ((x1, y1), . . . , (xn, yn)), put the vector
(i(x1, y1), . . . , i(xn, yn)) = ((−y1, x1), . . . , (−ynxn)).
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Division Algebras
Quaternions

Hamilton knew C could be viewed as pairs of real numbers. He tried to
define a good multiplication on triples in the 1830s. He became obsessed
with this until he defined the quaternions (H) in 1842.

Around 1830 Legendre pointed out that there are no 3-square identities
(and therefore no normed division algebra structure on R3) by showing
that 63 = (12 + 12 + 12)(42 + 22 + 12) is not a sum of three squares. Was
Hamilton aware of this?
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Division Algebras
Quaternions

One way to define the quaternions is as follows:
H consists of 4-tuples of real numbers a + bi + cj + dk, satisfying

i2 = j2 = k2 = ijk = −1

It follows that ij = k , jk = i , ki = j , and i , j , k anticommute.

If z = a + bi and w = c + di , we have

z + wj = (a + bi) + (c + di)j = a + bi + cj + dk

So H can also be considered as pairs of complex numbers.
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Division Algebras
Quaternions

We can also use the Cayley-Dickson construction to define H:
H consists of pairs of complex numbers with multiplication

(u, v)(x , y) = (ux − y∗v , yu + vx∗)

where ∗ is the conjugation on C.

Define a conjugation on H by (u, v)∗ = (u∗,−v).
This is just (a + bi + cj + dk)∗ = a− bi − cj − dk.

For q = a + bi + cj + dk, define ||q|| =
√

qq∗ = a2 + b2 + c2 + d2.
So the norm on H agrees with the norm on R4.
One can check that ||pq|| = ||p||||q||.
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Division Algebras
Quaternions

It is useful to consider a vector (x , y , z) as a quaternion xi + yj + zk .

This gives a useful “multiplication of triples”; for example:

uv = u × v − u · v

It follows that

u · v = −1

2
(uv + vu) u × v =

1

2
(uv − vu)
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Division Algebras
Quaternions

Quaternions give a nice way to produce rotations of R3:

Let Aq be the linear transformation x 7→ qxq−1.
Then

(Aqx)(Aqy) = (Aqx)× (Aqy)− (Aqx) · (Aqy)

But also

(Aqx)(Aqy) = (qxq−1)(qyq−1) = q(x × y − x · y)q−1 = Aq(x × y)− x · y

So Aq preserves the dot product and cross product. So Aq ∈ SO(3).
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Division Algebras
Quaternions

For a unit vector u, define exp(uθ) = cos θ + u sin θ.

It’s not too hard to show that for q = exp(uθ),
Aq is a rotation around the vector u by an angle of 2θ.

Remarks:

Note that the unit quaternions look like S3, and form a Lie group.

The Lie algebra is just vectors in R3.

The Lie-theoretic exponential map is the one defined above.

There is a lot more to be said about all of this...
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Division Algebras
Quaternions

Quaternions can also describe rotations of R4:

H acts on H by left multiplication.
Identifying H with R4 gives a homomorphism H→ M4(R) : q 7→ Lq.
For q with ||q|| = 1, we have Lq ∈ O(4).

Consider an sphere S4n−1 ⊂ R4n.
By identifying R4n with R4 ⊕ · · · ⊕ R4,
we can construct three nonvanishing vector fields:

At the point ((a1, b1, c1, d1), . . . , (an, bn, cn, dn)), put the vector
(i(a1, b1, c1, d1), . . . , i(an, bn, cn, dn)) =
((−b1, a1,−d1, c1), . . . , (−bn, an,−dn, cn)). Similarly for j and k.

Thomas Maienschein () Clifford Algebras, Division Algebras, and Vector Fields on SpheresOctober 26, 2011 13 / 1



Division Algebras
Quaternions

Quaternions can also describe rotations of R4:

H acts on H by left multiplication.
Identifying H with R4 gives a homomorphism H→ M4(R) : q 7→ Lq.
For q with ||q|| = 1, we have Lq ∈ O(4).

Consider an sphere S4n−1 ⊂ R4n.
By identifying R4n with R4 ⊕ · · · ⊕ R4,
we can construct three nonvanishing vector fields:

At the point ((a1, b1, c1, d1), . . . , (an, bn, cn, dn)), put the vector
(i(a1, b1, c1, d1), . . . , i(an, bn, cn, dn)) =
((−b1, a1,−d1, c1), . . . , (−bn, an,−dn, cn)). Similarly for j and k.

Thomas Maienschein () Clifford Algebras, Division Algebras, and Vector Fields on SpheresOctober 26, 2011 13 / 1



Division Algebras
Quaternions

Quaternions can also describe rotations of R4:

H acts on H by left multiplication.
Identifying H with R4 gives a homomorphism H→ M4(R) : q 7→ Lq.
For q with ||q|| = 1, we have Lq ∈ O(4).

Consider an sphere S4n−1 ⊂ R4n.
By identifying R4n with R4 ⊕ · · · ⊕ R4,
we can construct three nonvanishing vector fields:

At the point ((a1, b1, c1, d1), . . . , (an, bn, cn, dn)), put the vector
(i(a1, b1, c1, d1), . . . , i(an, bn, cn, dn)) =
((−b1, a1,−d1, c1), . . . , (−bn, an,−dn, cn)). Similarly for j and k.

Thomas Maienschein () Clifford Algebras, Division Algebras, and Vector Fields on SpheresOctober 26, 2011 13 / 1



Division Algebras
Quaternions

Quaternions can also describe rotations of R4:

H acts on H by left multiplication.
Identifying H with R4 gives a homomorphism H→ M4(R) : q 7→ Lq.
For q with ||q|| = 1, we have Lq ∈ O(4).

Consider an sphere S4n−1 ⊂ R4n.
By identifying R4n with R4 ⊕ · · · ⊕ R4,
we can construct three nonvanishing vector fields:

At the point ((a1, b1, c1, d1), . . . , (an, bn, cn, dn)), put the vector
(i(a1, b1, c1, d1), . . . , i(an, bn, cn, dn)) =
((−b1, a1,−d1, c1), . . . , (−bn, an,−dn, cn)). Similarly for j and k.

Thomas Maienschein () Clifford Algebras, Division Algebras, and Vector Fields on SpheresOctober 26, 2011 13 / 1



Division Algebras
Octonions

The next division algebra is the octonions, O.

The octonions were defined by Graves, a friend of Hamilton’s, shortly after
Hamilton defined the quaternions. He used them to give an 8-square
identity (which had been discovered by Degen in 1818). Cayley
independently defined them in 1845, and they are often called Cayley
numbers.
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Division Algebras
Octonions

The Cayley-Dickson construction can be used to define O:
O consists of pairs of quaternions with multiplication

(p, q)(r , s) = (pr − s∗q, sp + qr∗)

where ∗ is the conjugation on H.

Remarks:

O is a real 8-dimensional normed division algebra.

O is not associative.
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Division Algebras
Octonions

O can be used to describe rotations of R8.

O acts on O by left multiplication.
Identifying O with R8 gives a map O→ M8(R) : a 7→ La.
For a with ||a|| = 1, we have La ∈ O(8).

The map is not a homomorphism: LaLbx = a(bx) 6= (ab)x = Labx .
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Division Algebras
Sedenions

Applying the Cayley-Dickson construction again, we get the sedenions S.

S has a unit and multiplicative inverses, but has zero divisors.
So S is not a division algebra, and we can stop applying Cayley-Dickson.
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Clifford Algebras
Definition

We have been defining multiplications on Rn.

Let’s try the following:
Let C`k be the free algebra on Rk subject to the relations v 2 = −||v ||2.

Fix an orthonormal basis {ei} of Rk .
Then e2

i = −1, and also

−2 = (ei + ej)
2 = e2

i + eiej + ejei + e2
j = −2 + eiej + ejei

Therefore eiej = −ejei .

So C`k is generated by k anticommuting “square roots of 1”.
These relations are equivalent to the relations v 2 = −||v ||2.
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Clifford Algebras
Definition

These algebras (sometimes referred to as geometric algebras) were defined
by Clifford in 1876. We will see that C`1 ' C and C`2 ' H, and C`k
generalizes those algebras. We can’t expect C`3 ' O, since the former is
associative but the latter is not.

There are useful for studying Spin(n) and defining spinors. One can also
construct Clifford bundles on a manifold, bundles of Clifford modules,
spinor bundles, and other very fancy things.
Lawson and Michelsohn’s Spin Geometry has more about this.

In this talk we will only be interested in finding out when Rn admits a
C`k -module structure. First we will show some basic properties of C`k to
get a feel for it.
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Clifford Algebras
Basic Properties

Some general observations:

We can divide by nonzero vectors:

v 2 = −||v ||2, so v−1 = −v/||v ||2

There are zero divisors. For example, in C`3:

(e1e3 + e2)(e2e3 + e1) = e1e3e2e3 + e1e3e1 + e2
2 e3 + e2e1

= e1e2 + e3 − e3 − e1e2 = 0.
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Clifford Algebras
Basic Properties

As a vector space, it is generated by elements like ei1ei2 · · · eim .

We can rearrange so that i1 ≤ · · · ≤ im.
Repeated indices turn into −1, so i1 < · · · < im.
So as a vector space, it has dimension 2k (just like

∧
Rk).

Unlike
∧

Rk , there is no Z-grading.
For example, (e1)(e1e2) = −e2.
However, cancellation always occurs in pairs, so there is a Z2-grading.
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Clifford Algebras
Basic Properties

Let’s see what happens when C`2.

Multiply two general vectors:

(u1e1 + u2e2)(v1e1 + v2e2) = u1v1e2
1 + u1v2e1e2 + u2v1e2e1 + u2v2e2

2

= −u · v +

∣∣∣∣u1 u2

v1 v2

∣∣∣∣ e1e2

So, for example:

u · v = −1

2
(uv + vu)

In fact, this is true in C`k .
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Clifford Algebras
Universal Property

Let V be an R-vector space with a quadratic form Q.
Define C`(V ,Q) to be the free algebra on V subject to v 2 = Q(v).
(That is,

⊗
V /I , where I is generated by v ⊗ v − Q(v))

We were looking at C`k = C`(Rk ,−I ).
Another Clifford algebra we will need is C`′k = C`(Rk , I ).
The basic properties of C`′k are essentially the same as for C`k .
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Clifford Algebras
Universal Property

The algebra C`(V ,Q) has the following universal property:

Let A be an associative R-algebra.
Define an R-linear map φ : V → A such that φ(v)2 = Q(v)1A.
Then there exists a unique φ̃ : C`(V ,Q)→ A such that TFDC:

V

φ
$$HHHHHHHHHHH

i // C`(V ,Q)

φ̃
���
�
�

A

Where i : V → C`(V ,Q) is the natural inclusion.
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Clifford Algebras
Universal Property

For this talk we want to know when Rn has the structure of a C`k -module.

A homomorphism φ̃ : C`k → Mn(R) yields such a structure.
Such homomorphisms are induced by maps φ : Rk → Mn(R), such that:

φ(ei )
2 = −I

φ(ei )φ(ej) = −φ(ej)φ(ei )

That is, we have k matrices satisfying these relations.

It turns out that determining the (non-)existence of a C`k -module
structure will yield useful results about division algebras, vector fields on
spheres, n-square identities, cross products, and so on.
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Clifford Algebras
Periodicity

Recall that

C`k denotes C`(k ,−I ) (i.e., v 2 = −||v ||2),

C`′k denotes C`(k , I ) (i.e., v 2 = ||v ||2)

Let Mn(K) denote n × n matrices with entries in K.
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Clifford Algebras
Periodicity

Theorem

C`1 = C
C`2 = H

Proof.

Map e1 7→ i .

Map e1 7→ i and e2 7→ j (and e1e2 7→ k).
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Clifford Algebras
Periodicity

Theorem

C`′1 = R⊕ R
C`′2 = M2(R)

Proof.

Map e1 7→ (1,−1).

Map e1 7→
(

1
−1

)
and e2 7→

(
1

1

) (
and e1e2 7→

(
1

−1

))
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Clifford Algebras
Periodicity

Theorem

(2) C`k+2 ' C`′k ⊗H
(2’) C`′k+2 ' C`k ⊗M2(R)

Proof of (2).

Let {vi} be a basis for Rk+2,
Let {e ′i} be the generators for C`′k , and {e1, e2} for C`2.

Define u : Rk+2 → C`′k ⊗ C`2 by:

vi 7→ 1⊗ ei for i = 1, 2,

vi 7→ e ′i−2 ⊗ e1e2 for i > 2.

Check u(vi )
2 = −1 and u(vi )u(vj) + u(vj)u(vi ) = 0.

This induces ũ : C`k+2 → C`′k ⊗ C`2 ' C`′k ⊗H.
ũ is a bijection (consider it as a map between R-vector spaces).
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Clifford Algebras
Periodicity

Theorem

(4) C`k+4 ' C`k ⊗M2(H)

(4’) C`′k+4 ' C`′k ⊗M2(H)

Proof of (4).

Use the previous theorem twice:

C`k+4 = C`(k+2)+2 ' C`′k+2 ⊗H
' (C`k ⊗M2(R))⊗H
' C`k ⊗ (M2(R)⊗H) ' C`k ⊗M2(H)
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Clifford Algebras
Periodicity

Theorem

(8) C`k+8 ' C`k ⊗M16(R)

(8’) C`′k+8 ' C`′k ⊗M16(R)

Proof of (8).

Use the previous theorem twice:

C`k+8 = C`(k+4)+4 ' C`k+4 ⊗M2(H)

' (C`k ⊗M2(H))⊗M2(H)

' C`k ⊗ (M2(H)⊗M2(H)) ' C`k ⊗M16(R)

(Because H⊗H ' M4(R))
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Clifford Algebras
Periodicity

Finally, we can find all of the C`k (and all of the C`′k):

k C`k
1 C
2 H
3

H⊕H

4

M2(H)

5

M4(C)

6

M8(R)

7

M8(R)⊕M8(R)

8

M16(R)

C`3 ' C`′1 ⊗H ' (R⊕ R)⊗H.
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C`7 ' C`3⊗M2(H) ' (H⊕H)⊗M2(H).
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Periodicity

Finally, we can find all of the C`k (and all of the C`′k):

k C`k
1 C
2 H
3 H⊕H
4 M2(H)

5 M4(C)

6 M8(R)

7 M8(R)⊕M8(R)

8 M16(R)

k C`k
9 M16(C)

10 M16(H)

11 M16(H)⊕M16(H)

12 M32(H)

13 M64(C)

14 M128(R)

15 M128(R)⊕M128(R)

16 M256(R)
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Clifford Algebras
Clifford Modules

It will turn out to be useful to know when Rn has a C`k -module structure.

Given our classification, this theorem tells us everything we need:

Theorem

If K is a division algebra,

Mn(K) has a unique simple module Kn,

Mn(K)⊕Mn(K) has two, inherited from each summand,

Every other module is a direct sum of these.

(See e.g. Lang’s Algebra, chapter XVII)
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Clifford Algebras
Clifford Modules

Let nk denote the smallest n for which Rn is a simple C`k -module.

k nk C`k
1 2 C
2 4 H
3 4 H⊕H
4 8 M2(H)

5 8 M4(C)

6 8 M8(R)

7 8 M8(R)⊕M8(R)

8 16 M16(R)

k nk C`k
9 32 M16(C)

10 64 M16(H)

11 64 M16(H)⊕M16(H)

12 128 M32(H)

13 128 M64(C)

14 128 M128(R)

15 128 M128(R)⊕M128(R)

16 256 M256(R)

Observe that nk+8 = 16nk , and that nk gets a lot bigger than k.
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Vector Fields on Spheres
Examples

Problem

For a given n, what is the maximal k such that there exist vector fields
V1, . . . ,Vk on Sn−1 which are orthonormal at each point?

We saw earlier that we could use division algebras to construct some
vector fields. This won’t get us very far (as we will see later).
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Vector Fields on Spheres
Examples

We can take care of half of the spheres right away:

Theorem (Hairy Ball Theorem)

Even-dimensional spheres have no non-vanishing vector fields.

Proof.

Let v be a non-vanishing vector field on Sn. Normalize it.

Define Fθ(x) = x cos θ + vx sin θ.
Fθ is a homotopy between the identity 1S and the antipodal map α.

So degα = deg 1S = 1. But for even n, degα = −1, since α is the
composition of n + 1 reflections.
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Vector Fields on Spheres
Application of Clifford Modules

In general, we can get a lower bound by studying Clifford modules:

Theorem

If Rn admits the structure of a C`k -module,
then we can construct k orthonormal vector fields on Sn−1.

Remarks:

Fixing a basis for Rn, a C`k -module structure on Rn is a ring
homomorphism φ : C`k → Mn(R).

We can think of this as a choice of matrices Ui = φ(ei ) satisfying:

U2
i = −I and UiUj = −UjUi for i 6= j
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Vector Fields on Spheres
Application of Clifford Modules

We can choose a basis for Rn so that Ui ∈ O(n) for all i :

Let Γ be the group generated by {U1, . . . ,Uk}.
Let (, ) be any inner product on Rn, and define an inner product:

〈x , y〉 =
1

|Γ|
∑
U∈Γ

(Ux ,Uy)

Computing 〈Uix ,Uiy〉 just permutes the sum defining 〈x , y〉.
Choose an orthonormal basis for 〈, 〉.
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Vector Fields on Spheres
Application of Clifford Modules

For x ∈ Sn−1, we may consider x ∈ Rn with ||x || = 1.
The vectors {x ,U1x , . . . ,Ukx} are mutually orthogonal:

Proof Part 1

〈Uix , x〉 = 〈U2
i x ,Uix〉 (since Ui ∈ O(n))

= 〈−x ,Uix〉 (since U2
i = −1)

= −〈Uix , x〉

Proof Part 2

〈Uix ,Ujx〉 = 〈−x ,UiUjx〉 (since Ui ∈ O(n) and U2
i = −1)

= 〈x ,UjUix〉 (since UiUj = −UjUi )
= 〈Ujx ,−Uix〉 (since Uj ∈ O(n) and U2

j = −1)

= −〈Uix ,Ujx〉

So we have k vector fields on Sn−1.
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j = −1)

= −〈Uix ,Ujx〉

So we have k vector fields on Sn−1.
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Vector Fields on Spheres
Application of Clifford Modules

Precisely how many vector fields can we construct in this way?

In other words, given n, what is the largest k such that Rn admits the
structure of a C`k -module?
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Vector Fields on Spheres
Application of Clifford Modules

Recall that nk is the smallest n for which Rn is a simple C`k -module.

k nk C`k
1 2 C
2 4 H
3 4 H⊕H
4 8 M2(H)

5 8 M4(C)

6 8 M8(R)

7 8 M8(R)⊕M8(R)

8 16 M16(R)

(nk+8 = 16nk)

Let ρ(n) denote the largest k such that Rn

has a C`k -module structure.

ρ(n) is the largest k such that nk | n.
These are called Radon-Hurwitz numbers.

Examples:

For odd n, Rn is not a C`k -module.

R4 admits a C`3-module structure.
R8 also does (since it is R4 ⊕ R4)
But R8 is also a C`7-module.
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Vector Fields on Spheres
Application of Clifford Modules
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4 8 M2(H)

5 8 M4(C)

6 8 M8(R)

7 8 M8(R)⊕M8(R)

8 16 M16(R)

(nk+8 = 16nk)

Write n = 16a 2b m,
(where m is odd, 0 ≤ b ≤ 3)

Observe that:

n8a = 16a,

n8a+1 = 2 · 16a

n8a+3 = 4 · 16a

n8a+7 = 8 · 16a

So ρ(n) = 8a + 2b − 1.
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Vector Fields on Spheres
The Result

Here is a table that shows how many orthonormal VFs we can construct:

S1 S3 S5 S7 S9 S11 S13 S15

# VFs 1 3 1 7 1 3 1 8

S17 S19 S21 S23 S25 S27 S29 S31

# VFs 1 3 1 7 1 3 1 9

It turns out that we constructed everything:

ρ(n) is the maximal number of linearly independent VFs on Sn−1.

This is much harder (proved by J.F. Adams in 1962 using Adams
operations in K -theory).
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Division Algebras
Examples

Problem

When can we make Rn into a division algebra?

Remarks:

There are various theorems with differing assumptions about whether
the algebra is commutative, associative, or normed.

We will not require commutativity or associativity.
We will require the algebra to be normed.

Examples include R, C, H, and O (that’s all of them, in fact).
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Division Algebras
Application of Clifford Modules

Let’s see what Clifford modules say about such division algebras:

Theorem

Let K be a finite-dimensional normed division algebra over R.
If dimK = n (> 1), then Rn admits the structure of a C`n−1-module.

We will show that this implies n = 2, 4, or 8.

Remarks:

Corollary: dimK = n =⇒ Sn−1 is parallelizable.
That isn’t useful unless we know which spheres are parallelizable.
(our lower bound ρ(n) is sharp, but that is hard to prove).

If we drop the normed condition, it still implies Sn−1 is parallelizable.
It no longer implies Rn is a C`n−1-module.
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Division Algebras
Application of Clifford Modules

Let K be our division algebra, dimK = n.
As an R-vector space, it is Rn, and it has some multplication.

We will assume the norm comes from an inner product 〈, 〉 on Rn.
(This isn’t obvious, but it can be proven)
Fix an orthonormal basis for 〈, 〉.

Let Im(K) denote the elements of K orthogonal to 1 (Rn−1 as a VS).
Left multiplication is an R-linear map K→ K. So there is a map

Im(K)
φ−→ Mn(R) : v 7→

(
x

Lv7−→ vx
)

The strategy is to show that for v ∈ Im(K) with ||v || = 1, L2
v = −I .

That will induce a map φ̃ : C`n−1 → Mn(R).
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Division Algebras
Application of Clifford Modules

Let v ∈ Im(K), ||v || = 1.
Lv ∈ O(n) (since ||Lvx || = ||vx || = ||v ||||x || = ||x ||).

Proof that L2
v = −I

Let w = (v + 1)/
√

2.
Since ||w || = 1, Lw = (Lv + I )/

√
2 ∈ O(n).

Therefore:

I = LwL∗w =
1

2
(Lv + I )(L∗v + I )

=
1

2
(LvL∗v + Lv + L∗v + I ) = I +

1

2
(Lv + L∗v )

So L2
v = (−L∗v )(Lv ) = −I .
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Division Algebras
The Result

For Rn to be a C`n−1-module, we need nn−1 | n.

n nn−1 C`n−1

2 2 C
3 4 H
4 4 H⊕H
5 8 M2(H)

6 8 M4(C)

7 8 M8(R)

8 8 M8(R)⊕M8(R)

9 16 M16(R)

This only happens for n = 2, 4, or 8. After n = 8, nn−1 > n.
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Division Algebras
The Result

We proved:

Theorem

Let K be a finite-dimensional normed division algebra over R.
Then dimK = 1, 2, 4, or 8.

Remarks:

The same result is true if we drop the normed condition.

This is much harder (proved by Kervaire, and, independently, by Bott
and Milnor, in 1958).

It’s not much harder to show K = R,C,H, or O (Hurwitz’s theorem).
This part is not true if we drop the normed condition.
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Applications
Square Identities

Consider this two-square identity:

(a2
1 + a2

2)(b2
1 + b2

2) = c2
1 + c2

2

c1 = a1b1 − a2b2

c2 = a1b2 + a2b1

There is also Euler’s four-square identity:

(a2
1 + a2

2 + a2
3 + a2

4)(b2
1 + b2

2 + b2
3 + b2

4) = c2
1 + c2

2 + c2
3 + c2

4

c1 = a1b1 − a2b2 − a3b3 − a4b4

c2 = a1b2 + a2b1 + a3b4 − a4b3

c3 = a1b3 − a2b4 + a3b1 + a4b2

c4 = a1b4 + a2b3 − a3b2 + a4b1

There is also Degen’s eight-square identity (I’m not typing that one!)
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Applications
Square Identities

These identities just come from the normed division algebra structures on
Rn for n = 2, 4, 8: ||a||2||b||2 = ||c ||2, c = ab, where a, b, c ∈ C, H, or O.

Theorem

Define an n-square identity to be an expression of the form(∑
a2
i

) (∑
b2
i

)
=
∑

c2
i , where ci is bilinear in the a’s and b’s.

There only exist 1-, 2-, 4-, and 8-square identities.

Start by defining an R-algebra structure on Rn by:

(a1, . . . , an)(b1, . . . , bn) = (c1, . . . , cn)

This algebra preserves the norm on Rn. It has no zero-divisors.

Thomas Maienschein () Clifford Algebras, Division Algebras, and Vector Fields on SpheresOctober 26, 2011 52 / 1



Applications
Square Identities

These identities just come from the normed division algebra structures on
Rn for n = 2, 4, 8: ||a||2||b||2 = ||c ||2, c = ab, where a, b, c ∈ C, H, or O.

Theorem

Define an n-square identity to be an expression of the form(∑
a2
i

) (∑
b2
i

)
=
∑

c2
i , where ci is bilinear in the a’s and b’s.

There only exist 1-, 2-, 4-, and 8-square identities.

Start by defining an R-algebra structure on Rn by:

(a1, . . . , an)(b1, . . . , bn) = (c1, . . . , cn)

This algebra preserves the norm on Rn. It has no zero-divisors.

Thomas Maienschein () Clifford Algebras, Division Algebras, and Vector Fields on SpheresOctober 26, 2011 52 / 1



Applications
Square Identities

These identities just come from the normed division algebra structures on
Rn for n = 2, 4, 8: ||a||2||b||2 = ||c ||2, c = ab, where a, b, c ∈ C, H, or O.

Theorem

Define an n-square identity to be an expression of the form(∑
a2
i

) (∑
b2
i

)
=
∑

c2
i , where ci is bilinear in the a’s and b’s.

There only exist 1-, 2-, 4-, and 8-square identities.

Start by defining an R-algebra structure on Rn by:

(a1, . . . , an)(b1, . . . , bn) = (c1, . . . , cn)

This algebra preserves the norm on Rn. It has no zero-divisors.

Thomas Maienschein () Clifford Algebras, Division Algebras, and Vector Fields on SpheresOctober 26, 2011 52 / 1



Applications
Square Identities

We can’t apply our division algebra theorem; there is no apparent unit!

To fix, this we perform a “mutation”:

Choose u ∈ Rn with ||u|| = 1.

Define a new product a ∗ b = (R−1
u a)(L−1

u b),
(where Lu and Ru are left and right multiplication by u)

The new product still gives us an R-algebra preserving || · ||.
The multiplicative identity is u2.

Let x ∈ Rn and y = L−1
u x . Then:

u2 ∗ x = u2 ∗ Luy = (R−1
u u2)(L−1

u Luy) = uy = x

(Where R−1
u u2 = u since Ruu = u2).
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Applications
Square Identities

This mutation turned Rn into finite-dimensional normed division algebra
over R, so n = 1, 2, 4, or 8, proving the theorem.
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Applications
Cross Products

Cross products exist in R3 and R7 (Im(H) and Im(O), respectively).

Theorem

Suppose there is a cross product on Rn, n ≥ 3, such that

u × v is bilinear in u and v,

u × v is perpendicular to u and v,

||u × v ||2 = ||u||2||v ||2 − (u · v)2

Then n = 3 or 7.

Existence of such a cross product makes R⊕ Rn into a normed division
algebra by defining:

(a, v)(b,w) = (ab − v · w , aw + bv + v × w)

(This from Massey’s paper “Cross products of vectors in higher
dimensional Euclidean spaces”)
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Bott Periodicity

We proved the following things:

Theorem

Finite-dimensional, normed, real division algebras occur only in dimension
1, 2, 4, 8.

But in fact we can drop the “normed”. That turns out to be much harder.
(Kervaire, Bott, Milnor 1958).

Theorem

There are at least ρ(n) linearly independent vector fields on Sn−1.

But in fact there are also at most ρ(n). Also much harder. (Adams 1962).
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Bott Periodicity

The “optimal” results shown use K -theory.
There is a relationship between K̃O and Clifford modules, described in the
paper “Clifford Modules” of Atiyah, Bott, and Shapiro.

The statement of (one version of) Bott periodicity:

K̃O(S1) ' Z2

K̃O(S2) ' Z2

K̃O(S3) ' 0

K̃O(S4) ' Z
K̃O(S5) ' 0

K̃O(S6) ' 0

K̃O(S7) ' 0

K̃O(S8) ' Z

And K̃O(S8+k) ' K̃O(Sk).
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Bott Periodicity

There are isomorphisms Lk ' K̃O(Sk),
where Lk ' coker(Nk → Nk−1),
where Nk is the free abelian group generated by simple C`k -modules, and
Nk → Nk−1 is induced by an inclusion C`k1 → C`k .
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