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Grassmannians
Definition

Definition

The Grassmannian Gn(Rn+k) is the set of n-dimensional subspaces of
Rn+k . It is a compact manifold of dimension nk.

Gn(Rn+k) ' Gk(Rn+k) by taking orthogonal complements.

G1(Rn+1) ' RPn.

Definition

The infinite Grassmannian Gn(R∞) is the direct limit of the sequence:

Gn(Rn) ⊂ Gn(Rn+1) ⊂ · · · ⊂ Gn(Rn+k) ⊂ · · ·

(Direct limit: Take
⋃
k≥0

Gn(Rn+k) and choose the finest topology such that

every inclusion is continuous)
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Grassmannians
The tautological bundle

We can form an n-plane bundle over Gn(Rn+k):
Take X ∈ Gn(Rn+k). The fiber over X is X itself.
So the total space consists of pairs (n-plane in Rn+k , vector in that plane).

Definition

The tautological bundle over Gn(Rn+k) is denoted γn(Rn+k).

We also have the tautological bundle γn over Gn(R∞).

G1(R2) ' S1, and the tautological bundle “is” the Möbius strip.
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Grassmannians
Generalized Gauss Map

Definition

Let Mn ⊂ Rn+k . The Gauss map g : M → Gn(Rn+k) is given by
identifying a tangent space with a subspace of Rn+k .

Note that TM = g∗(γn(Rn+k)).
In fact, this works for any n-plane bundle over M, for large enough k :

Theorem

For any n-plane bundle ξ over M, ξ = g∗(γn) for some g : M → Gn(R∞).

Bundles over M are isomorphic iff their classifying maps are homotopic.
Note: M must be paracompact (open covers admit locally finite
refinements). This includes manifolds, metric spaces, CW complexes...
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Classifying Spaces
The structure group

Definition

A G -atlas is a local trivialization of a bundle with transition functions
U ∩ V → G .

A G -bundle is a vector bundle with a G -atlas.

G is called the structure group.

Let M be n-dimensional.

TM is a GL(n,R)-bundle.

If M has a metric, TM is an O(n)-bundle.

If M is also orientable, TM is an SO(n)-bundle.

If M has an almost complex structure, TM is a U(n)-bundle.
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Classifying Spaces
The functors bG and B

Define bG from C̃W
op
→ Set by M 7→ {G -bundles over M}.

We saw that bO(n) is representable:

Theorem

bO(n) = [—,Gn(R∞)].

Any G ⊂ GL(n,R) is representable (Brown representability).
So there is always a space BG for which bG = [—,BG ].
BG is the classifying space (Milnor construction).

BO(n) = Gn(R∞).

BSO(n) = G̃n(R∞) (Grassmannian of oriented planes).

BU(n) = Gn(C∞).
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Characteristic Classes
Cohomology of BG

Now we can study of the twisting of a bundle using the classifying map.
To study the map indirectly, pull back the cohomology of BG .

H∗(BO(n),Z2) ' Z2[w1, . . . ,wn].

H∗(BSO(n),Z2) ' Z2[w2, . . . ,wn].

H∗(BU(n),R) ' R[c1, . . . , cn] (or Z).

For a ring R with 1/2 (eg R),

H∗(BSO(2n + 1),R) = R[p1, . . . , pn]

H∗(BSO(2n),R) = R[p1, . . . , pn−1, e]/(e2 = pn/2).

We call wi Stiefel-Whitney classes, ci Chern classes, pi Pontryagin classes,
and e the Euler class.
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Characteristic Classes
Definition

Let h∗ be a cohomology functor (for example, Hk(—,R)).

Definition

A characteristic class is an assignment c of a class in h∗(M) given a
G -bundle over M.
It is natural: For ξ over N and f : M → N, c(f ∗ξ) = f ∗c(ξ).

More succinctly, c is a natural transformation between bG and h∗.
Note that pulling back a cohomology class of BG satisfies this definition.
In fact, all characteristic classes must be of this form:

Theorem

Nat(bG , h
∗) ' h∗(BG ).

This follows from contravariant Yoneda’s lemma: bG is representable, and
h∗ can be regarded as a functor to Set.
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Characteristic Classes
Examples of results

A sampling of results:

M is orientable iff w1(M) = 0.

M is the boundary of a compact manifold iff wi = 0 ∀i .
If RP2r is immersed in R2r+k , then k ≥ 2r − 1.

If M has a q-frame, then wn = · · · = wn−q+1 = 0.

Oriented 3-manifolds are parallelizable.
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Curvature forms
Vector-valued forms

Let ξ be a vector bundle on M.
Let Ωk(M) be k-forms on M.
Let Ω0(ξ) be sections of ξ.

If ω ∈ Ωk(M) and s ∈ Ω0(ξ), what is ω ⊗ s?
We “plug in” k vectors from TM, and are just left with s.
So it is a ξ-valued k-form.

Definition

Define ξ-valued k-forms by Ωk(ξ) = Ωk(M)⊗Ω0(M) Ω0(ξ).
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Curvature forms
Reinterpreting what we have done

Put a metric 〈, 〉 and connection ∇ on M.
The connection forms are defined by ∇XEi = ωj

i (X )Ej .

We can write this as ∇Ei = ωj
i ⊗ Ej ∈ Ω1(TM).

Note also that ∇(X iEi ) = dX i ⊗ Ei + X i∇Ei .

This motivates a definition of a connection on a general vector bundle ξ:

Definition

A connection on ξ is an R-linear map ∇ : Ω0(ξ)→ Ω1(ξ),
such that ∇(fV ) = df ⊗ V + f∇V .
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Curvature forms
Generalization

Let ∇ be a connection on a bundle ξ over M.
Choose a local frame {Ei} for ξ.

Define the connection forms by ∇Ei = ωj
i ⊗ Ej . Let A = (ωj

i ).
Let Ω = dA− A ∧ A, the matrix of curvature forms.
(When ξ = TM, everything is the same as before.)

∇ is compatible with a metric 〈, 〉 on ξ if:

d〈V ,W 〉 = 〈∇V ,W 〉+ 〈V ,∇W 〉

Remarks:

If ∇ compatible, then A, Ω antisymmetric WRT orthonormal frames.

There is a natural way to pull back connections.
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Invariant polynomials

We want to apply a polynomial P to Ω and get a globally defined form.
Computing Ω under a change of coordinates gives TΩT−1.
So we want P(Ω) = P(TΩT−1).

Example:
Polynomials σk given by det(I + tA) =

∑
σk(A)tk .

So σk(Ω) is a globally defined form on M.
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Invariant polynomials
The Pfaffian

There is a unique polynomial Pf in the entries of 2n × 2n skew-symmetric
matrices such that Pf(A)2 = det(A).

Pf

(
0 a
−a 0

)
= a

Pf


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = af − be + dc

One can show Pf(BABT ) = Pf(A) det(B).
For B orthogonal, this is invariant.
So for an orientable 2n-plane bundle, Pf(Ω) is a globally defined 2n-form.
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Invariant polynomials

It turns out that for invariant P:

P(Ω) is globally defined.

dP(Ω) = 0, so we can consider the cohomology class.

On the level of cohomology, it does not depend on ∇.

So we have an assignment of a cohomology class given a bundle.
If it is natural, then it has to be a characteristic class.

If ξ is a bundle on N with connection ∇, and f : M → N,
then f ∗(P(Ω∇)) = P(Ωf ∗∇).
So it is natural.
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Invariant polynomials
Characteristic classes

One can show that:

For a bundle with structure group SO(2n), Pf

(
Ω

2π

)
= e.

For a complex bundle, det

(
I +

tΩ

2πi

)
=
∑

ckt
k .

For a surface, Ω =

(
0 ω
−ω 0

)
So Pf

(
Ω

2π

)
=

ω

2π
=

K

2π
dV .
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Chern-Gauss-Bonnet

Integrating characteristic classes (or their cup products, to get the
dimension right) over M yields invariant quantities called characteristic
numbers.

The Euler class gives the Euler characteristic:
∫
M e = χ(M).

(Very rough) sketch of proof (M compact):

Let π : E → Mn be a k-plane bundle.

The Thom isomorphism theorem says Φ : H i (M) ' H i+k(T (E )).

Φ(x) = (π∗x) ∧ U, where U is the Thom class.

If s : M → E is a section, s∗U is the Euler class e.

Choose s for which Poincaré-Hopf applies.

Then show
∫
M s∗U is the sum of indices of zeros of s, which is χ(M).
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Chern-Gauss-Bonnet

We can write e in terms of Ω to get:

Theorem∫
M
Pf

(
Ω

2π

)
= χ(M)

The end!
For details see Spivak I.11, V.13 and Milnor-Stasheff
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